Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Letters in Drug Design & Discovery ; 20(8):1107-1116, 2023.
Article in English | ProQuest Central | ID: covidwho-2326929

ABSTRACT

Background: Anticipating the correlation between SARS-CoV-2 infection and ‘triplenegative breast cancer (TNBC)' remains challenging. It has been reported that people currently diagnosed with cancer have a higher risk of severe complications if they are affected by the viral infection. Cancer treatments, including chemotherapy, targeted therapies, and immunotherapy, may weaken the immune system and possibly cause critical lung damage and breathing problems. Special attention must be paid to the ‘comorbidity condition' while estimating the risk of severe SARSCoV- 2 infection in TNBC patients. Hence the work aims to study the correlation between triplenegative breast cancer (TNBC) and SARS-CoV-2 using biomolecular networking.Methods: The genes associated with SARS CoV-2 have been collected from curated data in Bio- GRID. TNBC-related genes have been collected from expression profiles. Molecular networking has generated a Protein-Protein Interaction (PPI) network and a Protein-Drug Interaction (PDI) network. The network results were further evaluated through molecular docking studies followed by molecular dynamic simulation.Results: The genetic correlation of TNBC and SARS-Cov-2 has been observed from the combined PPI of their proteins. The drugs interacting with the disease's closely associated genes have been identified. The docking and simulation study showed that anti-TNBC and anti-viral drugs interact with these associated targets, suggesting their influence in inhibiting both the disease mutations.Conclusion: The study suggests a slight influence of SARS-CoV-2 viral infection on Triple Negative Breast Cancer. Few anticancer drugs such as Lapatinib, Docetaxel and Paclitaxel are found to inhibit both TNBC and viral mutations. The computational studies suggest these molecules are also useful for TNBC patients to control SARS-CoV-2 infection.

2.
Life Sci ; 325: 121569, 2023 Jul 15.
Article in English | MEDLINE | ID: covidwho-2256809

ABSTRACT

AIMS: Without any doubt, vaccination was the best choice for Coronavirus disease 2019 (COVID-19) pandemic control. According to the American Society of Clinical Oncology (ASCO) and European Society for Medical Oncology (ESMO), people with cancer or a history of cancer have a higher risk of dying from Covid-19 than ordinary people; hence, they should be considered a high-priority group for vaccination. On the other hand, the effect of the Covid-19 vaccination on cancer is not transparent enough. This study is one of the first in vivo studies that try to show the impact of Sinopharm (S) and AstraZeneca (A) vaccines on breast cancer, the most common cancer among women worldwide. MATERIALS AND METHODS: Vaccination was performed with one and two doses of Sinopharm (S1/S2) or AstraZeneca (A1/A2) on the 4T1 triple-negative breast cancer (TNBC) mice model. The tumor size and body weight of mice were monitored every two days. After one month, mice were euthanized, and the existence of Tumor-infiltrating lymphocytes (TILs) and expression of the important markers in the tumor site was assessed. Metastasis in the vital organs was also investigated. KEY FINDINGS: Strikingly, all of the vaccinated mice showed a decrease in tumor size and this decrease was highest after two vaccinations. Moreover, we observed more TILs in the tumor after vaccination. Vaccinated mice demonstrated a decrease in the expression of tumor markers (VEGF, Ki-67, MMP-2/9), CD4/CD8 ratio, and metastasis to the vital organs. SIGNIFICANCE: Our results strongly suggest that COVID-19 vaccinations decrease tumor growth and metastasis.


Subject(s)
COVID-19 , Neoplasms , Humans , Female , Animals , Mice , COVID-19 Vaccines , COVID-19/prevention & control , CD4-CD8 Ratio , Biomarkers, Tumor , Vaccination
3.
Applied Sciences ; 12(11):5554, 2022.
Article in English | ProQuest Central | ID: covidwho-1892767

ABSTRACT

Triple-negative breast cancer (TNBC) constitutes a heterogeneous group of malignancies that are often aggressive and associated with a poor prognosis. The development of new TNBC treatment strategies has become an urgent clinical need. Diagnosis and subtyping of TNBC are essential to establish alternative treatments and targeted therapies for every TNBC patient. Chemotherapy, particularly with anthracycline and taxanes, remains the backbone for medical management for both early and metastatic TNBC. More recently, immune checkpoint inhibitors and targeted therapy have revolutionized cancer treatment. Included in the different strategies studied for TNBC treatment is drug repurposing. Despite the numerous medications available, numerous studies in medicinal chemistry are still aimed at the synthesis of new compounds in order to find new antiproliferative agents capable of treating TNBC. Additionally, some supplemental micronutrients, nutraceuticals and functional foods can potentially reduce the risk of developing cancer or can retard the rate of growth and metastases of established malignant diseases. Finally, nanotechnology in medicine, termed nanomedicines, introduces nanoparticles of variable chemistry and architecture for cancer treatment. This review highlights the most recent studies in search of new therapies for the treatment of TNBC, along with nutraceuticals and repositioning of drugs.

4.
Int J Mol Sci ; 22(5)2021 Feb 28.
Article in English | MEDLINE | ID: covidwho-1120888

ABSTRACT

Immunotherapy is a highly emerging form of breast cancer therapy that enables clinicians to target cancers with specific receptor expression profiles. Two popular immunotherapeutic approaches involve chimeric antigen receptor-T cells (CAR-T) and bispecific antibodies (BsAb). Briefly mentioned in this review as well is the mRNA vaccine technology recently popularized by the COVID-19 vaccine. These forms of immunotherapy can highly select for the tumor target of interest to generate specific tumor lysis. Along with improvements in CAR-T, bispecific antibody engineering, and therapeutic administration, much research has been done on novel molecular targets that can especially be useful for triple-negative breast cancer (TNBC) immunotherapy. Combining emerging immunotherapeutics with tumor marker discovery sets the stage for highly targeted immunotherapy to be the future of cancer treatments. This review highlights the principles of CAR-T and BsAb therapy, improvements in CAR and BsAb engineering, and recently identified human breast cancer markers in the context of in vitro or in vivo CAR-T or BsAb treatment.


Subject(s)
Breast Neoplasms/therapy , Immunotherapy/methods , Animals , Antibodies, Bispecific/immunology , Antibodies, Bispecific/therapeutic use , Biomarkers, Tumor , Breast Neoplasms/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Female , Humans , Immunotherapy, Adoptive/methods , Molecular Targeted Therapy , Receptors, Chimeric Antigen/immunology , SARS-CoV-2/immunology , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/therapy , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL